Introduction to Optical Transition Radiation

Ronald Agustsson
UCLA Particle Beam Physics Lab
Introduction to Optical Transition Radiation

- **Basic**
 - We study E-beams
 - cannot directly observe
 - need indirect means....radiation

- **Transverse Diagnostic types and limits**
 - scintillators
 - phosphor
 - YAG
 - SR ~270 µm (for similar beam parameters as LLNL)
 - wire scan
 - need low beam jitter
 - need very thin wires
 - TR
 - very good resolution (near point source diffraction limit)
 - relatively simple
Introduction to
Optical Transition Radiation

Why OTR?
- TR is relatively flat to $\sim \omega_p$ of reflector
- strongly attenuated above plasma freq.
 - may have coherence effects in IR range
- most compelling...
 - optics and digital imaging devices invisible spectrum
 - readily available
 - cheaper
 - no shortage of photons within the typical spectral range of interest
Introduction to Optical Transition Radiation

Theory

• Transition Radiation
 – TR created when charged particle crosses boundary of different dielectric constants
 – fields must reorganize and some can be shaken off as TR
Introduction to Optical Transition Radiation

- Transition Radiation
 - Characteristic angular dependence
 - Energy dependence on shape

\[
\frac{d^2 I}{d\omega d\Omega} = \frac{1}{4\pi^2 c} \left| -e\sin\theta + \frac{e\sin\theta'}{1 - \beta\cos\theta} \right|^2
\]

- Relative intensity vs \(\omega \) (scaled to optical)
 - Demonstrates strong attenuation above \(\omega_c = \gamma \omega_p \)
 - Radiation at this frequency is absorbed by material
 - Dielectric constant...not constant \(\rightarrow \varepsilon(\omega) \)

\[
\frac{dI}{d\omega} \propto \frac{e^2}{6\pi c} \left(\frac{\omega_{cr}}{\omega} \right)^4 \quad \text{for} \quad \omega > \omega_{cr}
\]
Introduction to Optical Transition Radiation

Optics

- linear beam optics (very brief)
 - focal length
 - magnification
 - $M = \frac{f_2}{f_1}$
- definitions
 - numerical aperture (N.A.)
 - Sine of angle between optical axis and marginal ray
 - working distance (WD)
 - Distance within first lens must be placed
 - $f/#$
 - Focal ratio
 - depth of field (D_{field})
 - Range about which image is clear in object plane
 - Depends on N.A. of lens
 - depth of focus (D_{focus})
 - Range about which image is clear in image plane

Infinity Correction System

$$N.A. = \frac{\phi}{2f}$$

$$f/\#= \frac{f}{\phi} \rightarrow \text{clear aperture}$$

$$D_{field} = \frac{\lambda}{2(N.A.)^2}$$

$$D_{focus} \approx M^2 D_{field}$$
Introduction to Optical Transition Radiation

- **Irregularities**
 - chromatic aberrations
 - spherical aberrations
 - flatness
 - Given on orders of wavelength
 - scratch
 - Width of a reference scratch in ten-thousands of a mm
 - 80 scratch ~ 8µm
 (but not that precise)
 - Dig
 - Craters on the surface - defined as its diameter in hundredths of a mm
 - 50 dig = 0.5mm
Introduction to Optical Transition Radiation

- LLNL Experiment
 - 50 MeV beam
 - Very small spot size
 - $\sim 20\mu m$
 - large jitter
 - Will utilize existing infrastructure
 - 6” cube
 - Polished aluminum target, angled 45 deg.
Introduction to Optical Transition Radiation

• OTR experiment
 – motivated by a similar one at KEK
 – want diffraction limited optical system
 • Rayleigh criterion for point source (overlapping airy disks)
 – ~1 microns for 10x objective
 – ~2 microns for 5x objective

\[d_{\text{min}} = \frac{.61\lambda}{N.A.} \]
Introduction to Optical Transition Radiation

- Plan Apochromat Objective
 - "10x" (with 200mm tube lens)
 - focal length 20mm
 - W.D of 33.5 mm
 - NA of .28
 - "5x" (with 200mm tube lens)
 - focal length 40mm
 - W.D of 34 mm
 - NA of .14
Introduction to Optical Transition Radiation

- Need to place objective very close to target
 - re-entrant design
 - thin window
 - differential pumping w/mylar?
- Recall magnification is f_2/f_1 so need 'long' focal length "tube lens" and 'long' tube
- Depth of field is only 3.5 microns for "10x" and 14 microns for "5x"
 - need to tilt the CCD to compensate for this
 - but depth of focus ~7.5mm and ~30mm respectively
- Will be difficult to do the initial focusing
 - maybe move target and rotatable mount for ccd
- Finally need to consider effects of spherical aberrations
 - window
 - tube lens
 - optics simulations needed
- Rough calculations with ½” CCD, 50x magnification & 100µm FOV
 - get ~0.2µm/pixel, defined by “circle of confusion” for this system
 - Beyond the diffraction limit, so its over designed (by linear theory)
 - Need to relax some parameters.
Introduction to Optical Transition Radiation

Conclusions

• May be able to create a 'diffraction limited' optical system for OTR imaging

• Several parameters need to be defined by LLNL and PBPL prior to LVO

• Mechanical design issues need to be kept under consideration when defining parameters

• More work needs to be done to fully understand the optical system (simulations)