GALAXIE: A Compact X-ray FEL

Brian Naranjo

PI: James Rosenzweig
UCLA Department of Physics and Astronomy

High Brightness Electron Beams Workshop
San Juan, Puerto Rico
2013 March 25
The GALAXIE Collaboration

Dept. of Physics and Astronomy
James Rosenzweig (PI)
John Miao (Co-PI)
Pietro Musumeci (Co-PI)
Seth Putterman (Co-PI)
Esperanza Arab
Sam Barber
Bill Baumgartner
Alex Cahill
Aihua Deng
Kristin Fitzmorris
Atsushi Fukasawa
Ivan Gadjev
Phuc Hoang
Agostino Marinelli
Brian Naranjo
Brendan O’Shea
Yusuke Sakai
Hoson To
Alessandra Valloni
Oliver Williams
Yunfeng Xi

Dept. of Electrical Engineering
Rob Candler (Co-PI)
Jere Harrison
Yongha Hwang
Abhijeet Joshi
Omeed Paydar

Gerard Andonian (Co-PI)
Alex Murokh (Co-PI)
Ronald Agustsson
Salime Boucher
David Bruhwiler
Luigi Faillace
Max Ho
Bryce Jacobson
Finn O’Shea

Dept. of Mechanical and Nuclear Engineering
Igor Jovanovic (Co-PI)
Scott Wandel
Guibao Xu

Dept. of Applied Physics/SLAC
Sami Tantawi (Co-PI)
Tao Tang

Igor Pogorelsky
Overview

S-Band Photoinjector

Skew Quads

Dielectric Accelerator

Microquads

THz Undulator

40-50 keV Coherent X-rays

Mid-IR Pulsed Laser
Overview

- Wavelength = 5 \(\mu \text{m} \)
- Pulse duration = 1 ps
- Pulse energy = 500 \(\mu \text{J} \)
- Repetition rate = 10 Hz (later, up to 10 kHz)
Overview

- Pulse duration = 1 ps
- Pulse current = 1 A
- Beam energy = 3-8 MeV
- Normalized emittance $= \epsilon_x^* = \epsilon_y^* = 2 \times 10^{-8} \text{ m} \cdot \text{rad}$
- Spot size < 100 μm
Overview

- Skew-quad triplets for flat ↔ round transformations
- Narrow emittance $= \epsilon_y^* = 2 \times 10^{-9} \text{ m} \cdot \text{rad}$
- Wide emittance $= \epsilon_x^* = 2 \times 10^{-7} \text{ m} \cdot \text{rad}$
Final beam energy = 1 GeV
Peak acceleration gradient > 1 GeV/m
Beam opening dimensions = 2 \(\mu m \times 500 \) mm
Final longitudinal bunching factor > 300
Final longitudinal momentum spread = \(\sigma_{\delta p/p_0} < 10^{-4} \)
- Need recoupling to accommodate multiple accelerator segments
- Field gradients > 3 kT/m
- Overall transverse extent less than a few mm
- Overall longitudinal extent approximately 100 µm
Overview

- Undulator wavelength $\lambda_u \approx 100 \mu m$
- Undulator strength parameter $K = eB\lambda_u/2\pi mc \approx 0.1$
- Required deflecting force $\approx ec(10 \text{ T}) = 3 \text{ GeV/m}$
- 1D Pierce parameter $\rho = 10^{-4}$
- Gain length $L_g = \lambda_u/4\pi\sqrt{3}\rho \approx 50 \text{ mm}$
The dielectric accelerator requires fields in excess of GV/m.

High power / high rep rate laser systems are commercially available at 800 nm. What is the rationale for pushing into the mid-infrared?

- Easier device fabrication (e.g., 800 nm holes instead of 130 nm holes).
- Can work with larger emittance (e.g., 10^{-9} m · rad instead of 3×10^{-11} m · rad).
- Nonresonant transverse focusing is stronger.
- Mitigate space charge and wakefield problems.
- Suppress multiphoton ionization for possible higher device breakdown fields.
The dielectric accelerator requires fields in excess of GV/m.

High power / high rep rate laser systems are commercially available at 800 nm. What is the rationale for pushing into the mid-infrared?

- Easier device fabrication (e.g., 800 nm holes instead of 130 nm holes).
- Can work with larger emittance (e.g., 10^{-9} m·rad instead of 3×10^{-11} m·rad).
- Nonresonant transverse focusing is stronger.
- Mitigate space charge and wakefield problems.
- Suppress multiphoton ionization for possible higher device breakdown fields.
The dielectric accelerator requires fields in excess of GV/m.

High power / high rep rate laser systems are commercially available at 800 nm. What is the rationale for pushing into the mid-infrared?

- Easier device fabrication (e.g., 800 nm holes instead of 130 nm holes).
- Can work with larger emittance (e.g., \(10^{-9}\) m \(\cdot\) rad instead of \(3 \times 10^{-11}\) m \(\cdot\) rad)
- Nonresonant transverse focusing is stronger.
- Mitigate space charge and wakefield problems.
- Suppress multiphoton ionization for possible higher device breakdown fields.
The dielectric accelerator requires fields in excess of GV/m.

High power / high rep rate laser systems are commercially available at 800 nm. What is the rationale for pushing into the mid-infrared?

- Easier device fabrication (e.g., 800 nm holes instead of 130 nm holes).
- Can work with larger emittance (e.g., 10^{-9} m · rad instead of 3×10^{-11} m · rad).
- Nonresonant transverse focusing is stronger.
- Mitigate space charge and wakefield problems.
- Suppress multiphoton ionization for possible higher device breakdown fields.
Technical Approach

Generation of 2 \(\mu \text{m} \) pump:

- Two-stage OPA
- \(\lambda_{\text{pump}} = 792 \text{ nm} \), \(\lambda_{\text{signal}} = 1.29 \mu \text{m} \), \(\lambda_{\text{idler}} = 2.05 \mu \text{m} \)
- Type II phase-matching in BBO (negative uniaxial)
- Use supercontinuum seed in first stage for passive CEP stabilization
- Relatively small group velocity mismatch among the three wavelengths
Results at 2 micron

Full-power 2 micron pump demonstrated with good beam characteristics:

\[M^2 = 1.14 \pm 0.10 \]
Results at 5 micron

Have demonstrated 5 micron generation in ZGP:

![Graph showing intensity versus wavelength]
Luigi Faillace, “Recent Advancements in RF Guns”
Wednesday Parallel Session B at 15:30

- Number of cells = 1.6
- Peak field = 160 MV/m
- Coaxial coupling
- High launch phase of 75 degrees
- Magnetize beam for subsequent emittance splitting
Luigi Faillace, “Recent Advancements in RF Guns”
Wednesday Parallel Session B at 15:30

- Number of cells = 1.6
- Peak field = 160 MV/m
- Coaxial coupling
- High launch phase of 75 degrees
- Magnetize beam for subsequent emittance splitting
The dielectric accelerator has approximate 2D Cartesian symmetry, with a narrow (2 µm) beam opening in the 2D plane and a wide (500 mm) beam opening in the extruded dimension. This permits large charge fluxes by:

- Reducing space-charge self-forces
- Reducing coupling to destabilizing transverse wakefields

Therefore, we need round ↔ flat skew-quad triplets before and after the accelerator.
The dielectric accelerator has approximate 2D Cartesian symmetry, with a narrow (2 \(\mu \text{m} \)) beam opening in the 2D plane and a wide (500 mm) beam opening in the extruded dimension. This permits large charge fluxes by:

- Reducing space-charge self-forces
- Reducing coupling to destabilizing transverse wakefields

Therefore, we need round \(\leftrightarrow \) flat skew-quad triplets before and after the accelerator.
Dielectric Accelerator

Accelerator eigenmode\(^1\)

- Resonant spatial harmonic provides acceleration.
- Nonresonant spatial harmonics provide focusing.
- Hole diameters approximately 800 nm.

Microquads

Anticipate the need to break the dielectric accelerator into multiple segments. Why?

- Wafer size is limited 100 mm.
- To introduce beam diagnostics.
- To replenish laser-power reservoir.
- To adjust sensitive parameters, particularly ϕ_0.

Need to recouple beam back into each segment. To keep the accelerator short, use microfabricated quadrupoles.

Rob Candler, “Microscale magnetic flux sources for electron beam manipulation” Wednesday Parallel Session A at 10:20

Jere Harrison, “Surface-micromachined Electromagnets for 100 μm-scale undulators and focusing optics,” Thursday Poster Session
Anticipate the need to break the dielectric accelerator into multiple segments. Why?

- Wafer size is limited 100 mm.
- To introduce beam diagnostics.
- To replenish laser-power reservoir.
- To adjust sensitive parameters, particularly ϕ_0.

Need to recouple beam back into each segment. To keep the accelerator short, use microfabricated quadrupoles.
Microquads

Rob Candler, “Microscale magnetic flux sources for electron beam manipulation” Wednesday Parallel Session A at 10:20

Jere Harrison, “Surface-micromachined Electromagnets for 100 \(\mu \text{m} \)-scale undulators and focusing optics,” Thursday Poster Session

Anticipate the need to break the dielectric accelerator into multiple segments. Why?

- Wafer size is limited 100 mm.
- To introduce beam diagnostics.
- To replenish laser-power reservoir.
- To adjust sensitive parameters, particularly \(\phi_0 \).

Need to recouple beam back into each segment. To keep the accelerator short, use microfabricated quadrupoles.
Microquad Fabrication

- Silicon substrate
- Bosch etch 10 μm deep pattern
Microquad Fabrication

- Insulation layer between silicon substrate and lower windings
- Silicon nitride via PECVD or SiO$_2$ via thermal oxidation
Microquad Fabrication

- Copper for lower windings and electrodes
- Sputter Ti/Cu seed, electroplate, and CMP
Microquad Fabrication

- Silicon nitride insulates yoke from lower windings
- Magnetic yoke (e.g., NiFe 80/20 — $B_{\text{sat}} = 1$ T, $\mu_{\text{rel}} = 8000$)
Microquad Fabrication

- Mold for vias and more PECVD insulation
Gold for upper windings and winding vias
Microquad Fabrication

- Strip mold and seed
Microquad Results

Field Gradient in aperture is 3.3 T/mm = 3,300 T/m!!

To obtain saturated output at 40-50 keV in a 1-2 meter undulator, we want $\lambda_u \approx 100 \, \mu m$ and $K = 0.1$. One such design is an electromagnetic standing wave helical undulator operating in the THz regime:
THz Undulator

Very large axial fields of 10 T and 3 GV/m. Careful electromagnetic design reduces power density at the walls:

Two coupling ports for independent excitation of two polarizations.
Genesis FEL simulation shows saturation at 2 meters:
A model scaled to X-band has been fabricated and tested:

- Undulator wavelength $\lambda_u = 1.39 \text{ cm}$
- 50 MW @ 11.424 GHz give $K=0.7$ (equivalent to axial fields of 0.5 T and 160 MV/m)
- Beamline test at NLCTA shows visible FEL radiation
Fields in a photonic accelerator

Dielectric periodic along the beam axis,

\[\epsilon(x_\perp, z) = \epsilon(x_\perp, z + d) \]

Longitudinal electric field of eigenmode having angular frequency \(\omega \) and wave vector \(k \),

\[E_z = -iE_0 \sum_{n_z} a_{n_z} e^{i(k_{n_z}z - \omega t)}, \]

where \(a_{n_z} \) are the spatial harmonic coefficients and

\[k_{n_z} = k + 2\pi n_z / d \quad (-\pi/d < k \leq \pi/d) \]

Assume dielectric has mirror-symmetry about \(xz \) and \(yz \) planes so that there are four possible modal symmetries. Look for speed-of-light bandgap modes having electric fields even under both types of reflection.
Fields in a photonic accelerator

Dielectric periodic along the beam axis,

$$\epsilon(x_\perp, z) = \epsilon(x_\perp, z + d)$$

Longitudinal electric field of eigenmode having angular frequency ω and wave vector k,

$$E_z = -iE_0 \sum_{n_z} a_{n_z} e^{i(k_{n_z} z - \omega t)},$$

where a_{n_z} are the spatial harmonic coefficients and

$$k_{n_z} = k + 2\pi n_z/d \quad (-\pi/d < k \leq \pi/d)$$

Assume dielectric has mirror-symmetry about xz and yz planes so that there are four possible modal symmetries. Look for speed-of-light bandgap modes having electric fields even under both types of reflection.
Fields in a photonic accelerator

Dielectric periodic along the beam axis,

\[\epsilon(x_\perp, z) = \epsilon(x_\perp, z + d) \]

Longitudinal electric field of eigenmode having angular frequency \(\omega \) and wave vector \(k \),

\[E_z = -iE_0 \sum_{n_z} a_{n_z} e^{i(k_{n_z}z - \omega t)}, \]

where \(a_{n_z} \) are the spatial harmonic coefficients and

\[k_{n_z} = k + \frac{2\pi n_z}{d} \quad (-\pi/d < k \leq \pi/d) \]

Assume dielectric has mirror-symmetry about \(xz \) and \(yz \) planes so that there are four possible modal symmetries. Look for speed-of-light bandgap modes having electric fields even under both types of reflection.
Fields in a photonic accelerator

Dielectric periodic along the beam axis,

$$\epsilon(x_\perp, z) = \epsilon(x_\perp, z + d)$$

Longitudinal electric field of eigenmode having angular frequency ω and wave vector k,

$$E_z = -iE_0 \sum_{n_z} a_{n_z} e^{i(k_{nz}z - \omega t)},$$

where a_{n_z} are the spatial harmonic coefficients and

$$k_{nz} = k + 2\pi n_z/d \quad (-\pi/d < k \leq \pi/d)$$

Assume dielectric has mirror-symmetry about xz and yz planes so that there are four possible modal symmetries. Look for speed-of-light bandgap modes having electric fields even under both types of reflection.
Eigenmode is a superposition of spatial harmonics, each having the same frequency ω, but a different phase velocity $v_{nz} = \omega / k_{nz}$.

Particle injection velocity v_{n_0} synchronized to the resonant spatial harmonic n_0. Resonant wave can provide stable longitudinal acceleration, but, consistent with Earnshaw’s theorem, is also transversely defocusing.

Nonresonant spatial harmonics $n_z = n_0 + q$, where $q \neq 0$, provide rapidly oscillating force that transversely stabilizes particle via time-averaged ponderomotive force.
Spatial harmonics

Eigenmode is a superposition of spatial harmonics, each having the same frequency ω, but a different phase velocity $v_{nz} = \omega / k_{nz}$.

Particle injection velocity v_{n0} synchronized to the resonant spatial harmonic n_0. Resonant wave can provide stable longitudinal acceleration, but, consistent with Earnshaw’s theorem, is also transversely defocusing.

Nonresonant spatial harmonics $n_z = n_0 + q$, where $q \neq 0$, provide rapidly oscillating force that transversely stabilizes particle via time-averaged ponderomotive force.
Eigenmode is a superposition of spatial harmonics, each having the same frequency ω, but a different phase velocity $v_{nz} = \omega / k_{nz}$.

Particle injection velocity v_{n0} synchronized to the resonant spatial harmonic n_0. Resonant wave can provide stable longitudinal acceleration, but, consistent with Earnshaw’s theorem, is also transversely defocusing.

Nonresonant spatial harmonics $n_z = n_0 + q$, where $q \neq 0$, provide rapidly oscillating force that transversely stabilizes particle via time-averaged ponderomotive force.
Transverse secular equation of motion

\[
\frac{d^2 Y}{dz^2} = Y \left\{ \frac{\alpha_0 k_0^2}{\gamma_0^3 \beta_0^2} \cos \phi - \frac{\alpha_0^2 \omega^2}{2 \gamma_0^2 \beta_0^4 \omega_0^2} [(B + D) + (C + E) \cos 2\phi] \right\}
\]

For example, the “transverse-direct” coefficient is

\[
B = \sum_{q \neq 0} \frac{E_q^2 k_q^2}{E_0^2 q^2} (1 - \beta_0 \beta_q)^2
\]

Origin of terms:

<table>
<thead>
<tr>
<th>Coefficient</th>
<th>Micromotion</th>
<th>Summation</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>transverse</td>
<td>direct</td>
</tr>
<tr>
<td>C</td>
<td>transverse</td>
<td>interference</td>
</tr>
<tr>
<td>D</td>
<td>longitudinal</td>
<td>direct</td>
</tr>
<tr>
<td>E</td>
<td>longitudinal</td>
<td>interference</td>
</tr>
</tbody>
</table>
Transverse secular equation of motion

\[
\frac{d^2 Y}{dz^2} = Y \left\{ \frac{\alpha_0 k_0^2}{\gamma_0^3 \beta_0^2} \cos \phi - \frac{\alpha_0^2 \omega_0^2}{2 \gamma_0^2 \beta_0^4 \omega_0^2} [(B + D) + (C + E) \cos 2\phi] \right\}
\]

For example, the “transverse-direct” coefficient is

\[
B = \sum_{q \neq 0} \frac{E_q^2 k_q^2}{E_0^2 q^2} (1 - \beta_0 \beta_q)^2
\]

Origin of terms:

<table>
<thead>
<tr>
<th>Coefficient</th>
<th>Micromotion</th>
<th>Summation</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>transverse</td>
<td>direct</td>
</tr>
<tr>
<td>C</td>
<td>transverse</td>
<td>interference</td>
</tr>
<tr>
<td>D</td>
<td>longitudinal</td>
<td>direct</td>
</tr>
<tr>
<td>E</td>
<td>longitudinal</td>
<td>interference</td>
</tr>
</tbody>
</table>
Transverse secular equation of motion

\[
\frac{d^2 Y}{dz^2} = Y \left\{ \frac{\alpha_0 k_0^2}{\gamma_0^3 \beta_0^2} \cos \phi - \frac{\alpha_0^2 \omega_0^2}{2 \gamma_0^2 \beta_0^4 \omega_0^2} [(B + D) + (C + E) \cos 2\phi] \right\}
\]

For example, the “transverse-direct” coefficient is

\[
B = \sum_{q \neq 0} \frac{E_q^2 k_q^2}{E_0^2 q^2} (1 - \beta_0 \beta_q)^2
\]

Origin of terms:

<table>
<thead>
<tr>
<th>Coefficient</th>
<th>Micromotion</th>
<th>Summation</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>transverse</td>
<td>direct</td>
</tr>
<tr>
<td>C</td>
<td>transverse</td>
<td>interference</td>
</tr>
<tr>
<td>D</td>
<td>longitudinal</td>
<td>direct</td>
</tr>
<tr>
<td>E</td>
<td>longitudinal</td>
<td>interference</td>
</tr>
</tbody>
</table>
Slow modulation for stronger transverse focusing

- Slowly modulating photonic waveguide over N unit cells decreases $\omega_0 \sim \beta_0 \omega / N$ and correspondingly increases ponderomotive focusing.
- Creates a slow sideband and a fast sideband.
- Focusing force vanishes for $k_q = \beta_0^2 k_0$. Synchronizing to the fast sideband avoids this possibility.
Slowly modulating photonic waveguide over N unit cells decreases $\omega_0 \sim \beta_0 \omega/N$ and correspondingly increases ponderomotive focusing.

- Creates a slow sideband and a fast sideband.
- Focusing force vanishes for $k_q = \beta_0^2 k_0$. Synchronizing to the fast sideband avoids this possibility.
Slowly modulating photonic waveguide over N unit cells decreases $\omega_0 \sim \beta_0 \omega / N$ and correspondingly increases ponderomotive focusing.

- Creates a slow sideband and a fast sideband.
- Focusing force vanishes for $k_q = \beta_0^2 k_0$. Synchronizing to the fast sideband avoids this possibility.
Slowly modulating photonic waveguide over N unit cells decreases $\omega_0 \sim \beta_0 \omega/N$ and correspondingly increases ponderomotive focusing.

- Creates a slow sideband and a fast sideband.
- Focusing force vanishes for $k_q = \beta_0^2 k_0$. Synchronizing to the fast sideband avoids this possibility.
At low energy, the strong nonresonant longitudinal wave produces extra transverse stabilization.

In figure shown ($\gamma = 6$), 40% of transverse stabilization is due to longitudinal motion.
At low energy, the strong nonresonant longitudinal wave produces extra transverse stabilization.

In figure shown ($\gamma = 6$), 40% of transverse stabilization is due to longitudinal motion.
At low energy, the strong nonresonant longitudinal wave produces extra transverse stabilization.

In figure shown ($\gamma = 6$), 40% of transverse stabilization is due to longitudinal motion.
Accelerator mode

- Eigenmode of the dielectric structure intrinsically provides both acceleration and transverse stabilization.
- Maximum longitudinal field / maximum dielectric field = 1.41.
- See movie.
Eigenmode of the dielectric structure intrinsically provides both acceleration and transverse stabilization.

- Maximum longitudinal field / maximum dielectric field = 1.41.
- See movie.
Eigenmode of the dielectric structure intrinsically provides both acceleration and transverse stabilization.

Maximum longitudinal field / maximum dielectric field = 1.41.

See movie.
Accelerator mode

- Eigenmode of the dielectric structure intrinsically provides both acceleration and transverse stabilization.
- Maximum longitudinal field / maximum dielectric field $= 1.41$.
- See movie.
Spatial harmonic spectrum
Drive waves are 180 degrees out-of-phase to excite the even-γ symmetric accelerator mode.

See movie.
- Drive waves are 180 degrees out-of-phase to excite the even-γ symmetric accelerator mode.
- See movie.
Coupler eigenmode

- Drive waves are 180 degrees out-of-phase to excite the even-γ symmetric accelerator mode.
- See movie.
Anti-crossing at coupling between fast group velocity drive mode and slow group velocity accelerator mode.
Coupler temporal evolution

See movies.
Buncher (black portion of line, length = 500 mm):
- Adiabatically ramp resonant field to induce bunching
- Nonresonant field is present for focusing

Accelerator (blue portion of line, length = 1500 mm):
- Accelerate from $\gamma_0 = 6$ to $\gamma_0 = 2000$
- Adiabatically ramp synchronous phase ϕ_0 to its final value
- Unique dynamics of an optical electron accelerator (high γ_0 and low α_0) yield “adiabatic bunch compression” proportional to $\gamma_0^{-3/4}$.

See movie.
Assuming an initially flat beam current of 1 A, the peak bunched current is

\[1 \text{ A} / \sqrt{2\pi \sigma^2} = 1050 \text{ A} \]

Still need to reduce longitudinal momentum spread by an order-of-magnitude. There is still room for improvement in the initial bunching.
Previously, Soong2 made measurements at up to 2.2 μm:

- Pulse duration $\tau = 1$ ps
- Silicon damage threshold $F_{th} = 0.35$ J/cm2
- Breakdown field $E_{\text{peak}} = \sqrt{F_{th}/\tau \epsilon_0} = 1.15$ GV/m.

No data available for short pulse mid-infrared breakdown in silicon or sapphire. So, testing done with frequency doubled CO₂ laser at BNL:

- Maximum pulse energy = 6 mJ at 5 micron
- Pulse duration $\tau = 5$ ps
- Maximum peak intensity = 15 J/cm²
- Sapphire damage threshold $F_{th} = 14$ J/cm²
- Silicon damage threshold $F_{th} = 0.61$ J/cm²

Scaling these 5 micron results to 1 ps pulses, we obtain:

- Silicon breakdown field = 1.5 GV/m
- Sapphire breakdown field = 7.3 GV/m
Simple cantilevered structure

- Simple non-functional single-mask design for developing fabrication recipes.
- SOI wafer.
- Plasma etch for pattern in upper silicon layer.
- Wet etch for undercutting the buried oxide.
Photolithography

GDS mask at 5X resolution:

Patterned photoresist [Max Ho, UCLA Nanolab]:

Fabricated structure

[Max Ho, UCLA Nanolab]
Optical test chip

- Functional two-mask design for optical testing.
- Gray layers are silicon. Blue layer is SiO$_2$.
- Shown here, the layers are 1 μm thick. Looking ahead to the stacked structure, we will investigate thick photonics (\sim 10 μm thick).
- Use gentle bends for the drive waveguides.
- Two laser inputs on the right. For mode spectroscopy, use mid-infrared CW quantum cascade laser.
- Two outputs on the right go to spectrometer/detector.
- Adjusting relative phase of inputs changes symmetry of excited modes.
The future – stacking GALAXIE

[A. Tandaechanurat et al., Demonstration of high-Q three-dimensional photonic crystal nanocavity embedding quantum dots, Appl. Phys. Lett. 94, 171115 (2009)]
The future – stacking GALAXIE

- To accommodate ribbon beam, structure must be around 500 μm tall
- Anisotropic ratio 500:0.8 is well beyond state-of-the-art
- Instead, stack multiple devices
Conclusion

Conceptual steps the GALAXIE accelerator structure has taken:

- Provide nonresonant transverse focusing.
- Couple power from a co-moving quasi free-space laser pulse.
- Compress bunches in excess of a factor of 1000 via adiabatic bunch compression.
- Mitigate space-charge and wakefield problems.

Fabrication continues to be a major challenge:

- Structure requires beyond state-of-the-art anisotropic etching.
- Can demonstrate concept in silicon, but a practical device would need to be built from sapphire.
Conclusion

Conceptual steps the GALAXIE accelerator structure has taken:

- Provide nonresonant transverse focusing.
- Couple power from a co-moving quasi free-space laser pulse.
- Compress bunches in excess of a factor of 1000 via adiabatic bunch compression.
- Mitigate space-charge and wakefield problems.

Fabrication continues to be a major challenge:

- Structure requires beyond state-of-the-art anisotropic etching.
- Can demonstrate concept in silicon, but a practical device would need to be built from sapphire.