Optical transverse injection in laser-wakefield acceleration

Rémi Lehe, Agustin Lifschitz, Cédric Thaury, Jean-Marcel Rax, Victor Malka (LOA - France)
Xavier Davoine (CEA - France)
Outline of the presentation

• Principles and applications of laser-wakefield accelerators

• Existing methods of injection

• Optical transverse injection: a new mechanism of injection

• Conclusion: properties of the beam
Outline of the presentation

• Principles and applications of laser-wakefield accelerators

• Existing methods of injection

• Optical transverse injection : a new mechanism of injection

• Conclusion : properties of the beam
Principles of laser-wakefield acceleration

• Occurs when a **short and intense** laser pulse is focused into a gas jet. (~30 fs, ~100 TW)

• The laser **ionizes the gas** and drives a **wakefield**.
Principles of laser-wakefield acceleration
Principles of laser-wakefield acceleration

- **Accelerating and focusing** fields (for the electrons) inside the cavity

- Yet for electrons to be accelerated, one needs **injection**.
Applications

• Produces electron beams at \(~100 \text{ MeV} - 1\text{GeV}\) over an accelerating distance of \(\sim 1 \text{ mm} - 1 \text{ cm}\)

• Conventional accelerators require a \(~1000 \text{ times}\) longer distance

• Prospective applications:
 - Radiotherapy
 (Glinec et al., Medical Physics, 2006)
 - Non-destructive testing
Applications: Free electron laser

• Several **simultaneous** requirements on the quality of the electron bunch

 - low energy dispersion \(\Delta E \)
 - low emittance \(\epsilon_{\perp} \)
 - high charge/current \(Q \)

• These quantities are in principle **conserved** during the acceleration, and are thus **determined by injection**.

(Z. Huang, K. Kim, PRSTAB, 2007)
Outline of the presentation

• Principles and applications of laser-wakefield accelerators

• **Existing methods of injection**

• Optical transverse injection : a new mechanism of injection

• Conclusion : properties of the beam
Existing methods of injection: self-injection

Spontaneous injection due to the nonlinear propagation of the laser

- **Transverse self-injection**
 - High charge (100-200 pC)
 - Large energy spread
 - Strong shot-to-shot fluctuation
 - Not tunable

- **Longitudinal self-injection**
 - Low shot-to-shot fluctuation
 - Low charge (~5 pC)
 - Not tunable

(S. Corde et al., Nat. Com., 2013)
Existing method of injection: optical injection

- Injection is **triggered** by a less-intense counter-propagating pulse.

- The mechanism is essentially **longitudinal**.

- Beam properties:
 - Tunable and stable electron beams
 - Low energy spread (~1 MeV)
 - Intermediate charge (~20 pC)
 - Relatively high emittance (~0.5-2 mm.mrad)
A new regime of injection: optical transverse injection

• New mechanism observed in numerical simulations, in the regime:

\[k_p w_0 \approx 2 \quad a_0 \approx 4 \]
\[w_1 \geq w_0 \]

• The mechanism is mainly **transverse**.

• Produces high-quality beams:
 - High charge (~50-100 pC)
 - Low energy spread (~0.6 MeV)
 - **Low emittance (0.15 mm.mrad)**
Outline of the presentation

• Principles and applications of laser-wakefield accelerators

• Existing methods of injection

• **Optical transverse injection** : a new mechanism of injection

• Conclusion : properties of the beam
Methods : Particle-in-cell (PIC) simulations

- PIC code : integrates
 - the **Maxwell equations** on a discrete grid
 - the **equations of motion** for (macro)particles of the plasma

- **Calder-Circ** : quasi-cylindrical code
 (Lifschitz et al., JCP, 2009)
 - captures all the relevant 3D effects
 - runs much faster than a fully-3D PIC code

- Results were confirmed by (time-intensive) fully-3D simulations.
Why some electrons are injected

- The laser collision causes the bubble to transiently expand.

- The bubble expansion triggers the injection of off-axis electrons.

- Explained (in the context of an expansion caused by a density gradient) by simplified-bubble models.
Why the bubble transiently deforms

- Explained by the ponderomotive force \(\vec{F}_{pond} \propto -\nabla I_{laser} \)

- The electrons spend more time inside the pulse, when there is no collision.
Why the obtained emittance is low

- Selection of the electrons with low radius and low transverse momentum

- This phenomenon does not occur for optical longitudinal injection.
Numerical growth of emittance

- Low emittance at the moment of injection (0.15 mm.mrad)

- Emittance grows throughout the acceleration (but should in theory remain constant)

- The growth of emittance is a **numerical artifact** (due to numerical Cherenkov effect in PIC codes)

 (Lehe et al., PRSTAB, 2013)

\[
\epsilon_x = \frac{1}{mc} \sqrt{\langle x^2 \rangle \langle p_x^2 \rangle - \langle xp_x \rangle^2}
\]
Outline of the presentation

• Principles and applications of laser-wakefield accelerators

• Existing methods of injection

• Optical transverse injection: a new mechanism of injection

• Conclusion: properties of the beam
Resulting beam

- Peak: transverse injection (50 pC)
 Tail: longitudinal injection (13 pC)

- In the peak, simultaneously:
 - short duration (3 fs)
 - high current (7 kA)
 - low energy spread (0.6 MeV)
 - low emittance (0.15 mm.mrad)

- Can be obtained with current laser facilities
 (needed laser energy: 1.6 J, with tighter focusing and lower plasma density compared to previous experiments)

- Stable and robust scheme: does not rely on self-focusing, or external guiding, or density gradient
Conclusion

• A laser collision can produce a transient expansion of the accelerating bubble.

• This expansion leads to transverse injection.

• In this process, high-quality electron bunches are produced, having simultaneously high charge, low energy spread, low emittance.
Thank you for your attention

This work was supported by the European Research Council through the PARIS ERC project. (Contract No. 226424)