Non-linear effects in Compton Sources

Y. Sakai¹, J. Durius¹, L. Xiao¹, S. Barber¹, F. H. O’Shea¹, P. Musumeci¹, O. Williams¹, J. B. Rosenzweig¹, V. Yakimenko², C. Swinson³, A. Korostyshevsky³, B. Malone³, M. Montemagno³, K. Kusche³, M. Fedurin³, M. N. Polyansky³, M. Babzien³, and I. Pogorelsky³

¹University of California at Los Angeles, Los Angeles, California 90095, USA
²Stanford Linear Accelerator Center, Menlo Park, CA 94025, USA
³Brookhaven National Laboratory, Upton, New York 11973, USA

27 March 2013,
Physics and Applications of High Brightness Beams:
Towards a Fifth Generation Light Source
Inverse Compton Scattering

- **Ultra-fast materials characterization**
 - X-rays [keV] for penetrating metals
 - X-ray backlighter, [< ps] resolution
- **Biology and medicine**
 - Breakthrough diagnosis/therapy
 - Phase contrast imaging

- **Intermediate energy [MeV]**
 - Slow positrons (for materials)
 - Nuclear materials detection
- **High energy physics [GeV]**
 - γγ collider, polarized e+
Current ICS project, UCLA at BNL ATF

Standoff detection of special nuclear materials

DETRA: No. HDTRA1-10-1-0073

Active detection of nuclear materials via photo-fission

with use of IFEL & Reserculation

Requirements:

★ ~10-15 MeV ↔ ~ GeV electron
★ photon number > 10^{13} /sec (?)(!) ↔ 10^{10} photons/shot ↔ a_L ~ 1
BNL ATF specification

e-beam:
0.3 nC, $\sigma_x \sim 30 \mu m$, 65 MeV

CO$_2$ laser:
~ 1 TW($a_L \sim 1^*$), $w_0 \sim 40 \mu m$, $Z_R \sim 0.5$ mm, 3 ps, 10.6 μm

★ Photons/pulse:
$N_\gamma = \sigma_T N_e N_L / \sigma_x^2 4\pi \approx 10^{7-8}$

★ X-ray energy:
$E_{\gamma} = 4\gamma^2 E_L \approx 10$’s of keV

* $a_L = eE_L \lambda_L / 2\pi n_c c^2$

Pre-history of ATF
2006yr
Observation of 2nd harmonic
Kumita et.al.

Ag attenuator used,
\(a_L = 0.35\)

2009yr
K-edge filtering of linear ICS
Williams et. al.

Narrow band linear ICS,
Fe foil used.

Detailed study of non-linear ICS,
using gradually upgraded ATF laser
Recent fresh experiment in BNL ATF
Experimental set-up

Screen: MCP*, φ1"

φ2.5”, f/1 Cu parabola with φ1/16” hole

CO2 laser w0 φ1.5”

φ3” Cu mirror with φ1/4” hole

*MCP: Photonis, KBr coated
Specification of used filters

- **Fe** (5 < $h\nu$ < 7 keV)
 Extraction of 1st

- **Au** (10 < $h\nu$ < 12 keV)
 Extraction of 2nd

- **Al 250 μm** ($h\nu$ > 8 keV)
 > 2nd

- **Al 1000 μm** ($h\nu$ > 12 keV)
 > 3rd

Back scattered value: 7.6 keV, @ 65 MeV, 10.6 μm
Typical Donut shape distribution, linear ICS case

\[5 \text{ keV} < \text{Fe K-edge} < 7 \text{ keV}\]

\[a_L < 0.25 \rightarrow 7.6 \text{ keV}\]

Donut shape = Red-shifted off-axis component
Details of red-shifted fundamental radiation

5 keV < Fe K-edge < 7 keV
\[\leftrightarrow 0.5 < a_L < 0.7 \]

Estimated \(a_L \sim 0.6 \)

\[\hbar \omega_{\text{x-ray}} = \frac{4 \gamma^2 \hbar \omega_L}{1 + a_L^2/2 + \gamma^2 \theta^2} \]
Predicts angular-wavelength spectra by classical Lenard-Wiechert approach

\[
\frac{dp}{dt} = eE + e\left(\frac{v}{c}\right) \times H
\]

\[
p_\mu p^\mu = m_e^2 c^2
\]

\[
v = \frac{pc}{\mathcal{E}}
\]

\[E_x = E_{0,s} \sin(k_s z - \omega_s t)\]

1. Particle track

\[E_{\text{LW}} = \frac{m_e}{e} \frac{r_e}{R} \frac{n \times \{(n - v/c) \times w\}}{(1 - n \cdot v/c)^3}\]

2. Field on the screen

3. Fourier transform

\[E_{\text{LW},x}(\omega) = \left| \int_{-\infty}^{\infty} E_{\text{LW},x}(t)e^{i\omega t} dt \right|\]
X-ray distribution for $a_L \approx 0.6$

Predicts angular-wavelength spectra by, classical Lenard-Wiechert approach

In 16 mrad square ($1/\gamma = 8$ mrad @ 65 MeV)

1st ($0 < h\nu < 7$ keV),
Two maxima = Low energy

2nd ($7 < h\nu < 14$ keV),
Peak to peak lobe = 12 mrad

3rd ($14 < h\nu < 25$ keV),
Radiation angle < $1/\gamma$
Narrow band extraction of 2nd component

Mean angle 5 mrad @ 10-12 keV

2nd Harmonic 10-12 keV

x: 8 mrad = 1/\gamma

1/10
Observed higher order harmonics
Discussion of observed harmonics

1^{st} (Fe K-edge) $> 2^{nd}$ (Al 250 μm) $> 3^{rd}$ (1000 μm)

Observed intensity in MCP [a.u.]

Photon number density in theory [a.u.]
Decompose circle shaped lobe

Intensity of 3rd component is comparable to 2nd component, that is 1/10 of fundamental

Al 250 μm (> 8 keV)
“Circle shaped lobe”

Au filtering (10-12 keV)
“Crescent lobe“

Al 1000 μm (> 12 keV)
”On-axis maxima“
& In addition, how is the circular polarization case?

Use of Al 250 μm: > 2nd components

Rotation

For next step of nonlinear ICS
Radiation control of ICS X-ray 2 color?
Two color ICS in nonlinear regime

High frequency laser (TiS, YAG)
Long wavelength laser (CO2)

Modulated X, γ-ray

Small amplitude linear motion
Non-linear figure-8 motion
Hybrid motion

\[E_{x,s} + E_{x,l} = E_{x,s} + E_{x,l} \]

is under investigation.
Small oscillation is, superimposed upon large figure-8

\[E_{\text{LW}} = \frac{m_e}{e} \frac{r_e}{R} \frac{n \times \{(n - \nu/c) \times w\}}{(1 - n \cdot \nu/c)^3} \]

Hybrid motion

\[\rightarrow - \frac{m_e}{e} \frac{r_e}{R_0} \frac{w_x(1 - \frac{v_z}{c}) + \frac{w_z v_x}{c}}{(1 - \frac{v_z}{c})^3} \]

with cycle of figure-8 motion

Use of radiation phase

Directed toward observer

\[E_{x,s} + E_{x,l} \]
Example of non-linear two color spectrum

\[4\gamma^2 \hbar (\omega_{L,\text{short}} + n\omega_{L,\text{long}}) \]

Pulsed extraction of hard X-ray?

Multi photon energy?

Numerically calculated Lienard-Wiechert potential \(E_{LW,x}(t_{\text{screen}}) \) on \((x, y, z) = (0, 0, 0)\)
FIG. 4. Numerically calculated $E_{LW,x}(t_{\text{screen}})$ (a), its on-axis spectrum (b), $E_{LW,x}(h\omega)$ on the screen, that is produced by the ICS interaction of 75 MeV electron beam, CO$_2$ laser, and 200 nm (10.6 μm/50) laser. $a_{L,CO2}$: 2.0, $a_{L,200\,\text{nm laser}} = 2.0/50 \approx 0.04$ backscattered value: 0.51 MeV.
Experimental Scenario in ATF

Use of existing YAG and CO$_2$

Use of k-edge 25-50 keV, would show 2 lobe shape?
Summary

- Observation of red-shifting & 3rd Harmonic is reported.

- Radiation control of ICS X-ray is proposed.
Gracias, Grazie, Thank you,
Спасибо, 謝謝,
&ご清聴有難う御座います.

This work was supported by the U.S. Department of Energy under Contracts No. DE-FG02-07ER46272 and No. DE-FG03-92ER40693, the Office of Naval Research under Contract No. ONR N00014-06-1-0925, DARPA under Contract No. N66001-11-1-4197, and the Defense Threat Reduction Agency Contract No. HDTRA1-10-1-0073.

Also, we would like to thank all of the members and collaborators in BNL ATF and UCLA PBPL. In addition, authors would like to acknowledge for kind advices and contributions from Dr. T. Kumita in Tokyo Metropolitan Univ., Dr. Y. Kamiya in Tokyo Univ, Dr. D. Cline, and Dr. S. Tochitsky in UCLA.