Snapshot Imaging of Ultrafast Electron Pulses

Zhensheng Tao, Jenni Portman, He Zhang, P. M. Duxbury, M. Berz and Chong-yu Ruan
Physics and Astronomy Department, Michigan State University
UESDM, UCLA, 12th Dec 2012
Ultrafast Electron Source for Diffraction and Imaging

Rose criterion: \[\text{Shot noise} = \frac{1}{\sqrt{N}} \leq \frac{\text{constrast}}{\# \text{ of grey scale levels}} \]

Need \(\sim 100 \text{ e}^-/\text{pixel} \)

\(10^7-10^9 \) detected electrons for an image

\(10^5-10^7 \) detected electrons for a diffraction pattern

Pulse compression:

What affects the compressibility?

a) Initial phase space
b) Nonlinear effects from electron optics

“Snapshot Imaging of Ultrafast Electron Pulses”
Zhensheng Tao
Projection Shadow Imaging Technique

Laser beam: 266nm, 50fs
Electron beam: 30keV

d: Projection distance, 5mm
L: Camera distance, 16.5cm
Magnification: L/d~33
Extraction field strength: 0~0.4 MV/m

Z. Tao, H. Zhang, P. M. Duxbury, M. Berz, and C.Y. Ruan
1) Photoemitted electron pulses cast shadow images. The density profile at the center of the bunch is extrapolated for analysis.

2) Ballistic expansion with the low-density electron bunch

3) Superlinear expansion with the high-density electron bunch, due to the space charge effect

Analytical Fitting Function:

\[F(s) = F_{\text{pre}}(s) + \frac{x_0}{Ls} A \left(\frac{\exp \left[-\frac{(s x_0 - L z_0)^2}{2(s^2 \sigma_x^2 + L^2 \sigma_z^2)} \right]}{\sqrt{\frac{1}{\sigma_x^2} + \frac{s^2}{L^2 \sigma_z^2}}} \right) \]

- \(\sigma_z \): the longitudinal length,
- \(z_0 \): the center of mass,
- \(A \): proportional to electron sheet density.

"Snapshot Imaging of Ultrafast Electron Pulses"

1) Power-law scaling relationship between longitudinal width and number of electrons

\[\sigma_z \big|_{t=100\text{ps}} = \sigma_0 \cdot \Sigma^\gamma, \text{where } \gamma \approx 0.5 \]

2) The power-law is consistent with different experimental conditions (Extraction field strength, \(F_S \) and laser fluence, \(F \))

"Snapshot Imaging of Ultrafast Electron Pulses"

Single-electron Photoemission Model

Step 1: Photon absorption

Step 2: Electron transport to the surface

Step 3: Emission

Selection in the momentum space

“Snapshot Imaging of Ultrafast Electron Pulses”

Virtual Cathode Effect

Space charge field of early emitted electrons
1) limits the quantum efficiency
2) affects the phase space of ultra-short electron pulse

Photoelectron density saturates with the increasing of the laser fluence

“Snapshot Imaging of Ultrafast Electron Pulses” Zhensheng Tao
Fast Multipole Method (FMM)

1) FMM encloses all the particles into the cube box with proper size and calculate the pairwise interaction using the local and far multipole expansion.
2) Efficiency of calculation is close to $O(N)$ and computation time is significantly reduced.

Photoemission Simulation with Multi-particle Interaction

1) Momentum space selection based on Three-step Model
2) Electron transport without scattering
3) Image-charge distribution
4) Space charge field calculated using FMM

“Snapshot Imaging of Ultrafast Electron Pulses”

He Zhang, Martin Berz, Nucl. Instr. and Meth. A, 645, 338 (2011)

Zhensheng Tao
1) Electron bunch profile

a) Non-gaussian profile at the birth, while the front profile agrees with shadow image very well.

b) With the electron bunch evolving, the shape is more close to Gaussian shape.

c) The peak number of electrons reaches ~10^8 e- at the beginning, while only ~7×10^6 e- are able to escape.

"Snapshot Imaging of Ultrafast Electron Pulses"
Zhensheng Tao
Photoemission simulation predicts the power law dependence of electron bunch width on the number of electrons with the exponent ~ 0.56
Conclusion

Four aspects of photoemission and space charge effects as high-brightness ultrafast electron source:

1) Virtual cathode effect

2) Power-law scaling of bunch size with number of electrons

3) Non-linear phase space distribution

4) Initial phase space broadening

“Snapshot Imaging of Ultrafast Electron Pulses” Zhensheng Tao
Acknowledgements

Collaborators

Martin Berz (Beam physics)
Marc Doleans (RF buncher)
Marty Crimp (Electron microscopy)
Phil Duxbury (Molecular dynamics)
Marcos Dantus (Laser pulse shaping)
Chong-Yu Ruan (Ultrafast electron diffraction)

Special thanks to:
Terry Han
Kiseok Chang
Thank you !!!