Intro: **The LCLS Beamline**

- Operational 2009
- World’s first X-ray FEL
- 1.6 cell S-band photoinjector
- 2 bunch compressors
- 100 m undulator

http://www-srl.slac.stanford.edu/lcls/
Intro: The LCLS

Relevant Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>1.0 nC</th>
<th>0.2 nC</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal electron energy, BC1</td>
<td>0.25</td>
<td>0.25</td>
<td>GeV</td>
</tr>
<tr>
<td>Nominal electron energy, BC2</td>
<td>4.3</td>
<td>4.3</td>
<td>GeV</td>
</tr>
<tr>
<td>Peak current</td>
<td>3400</td>
<td>2500</td>
<td>A</td>
</tr>
<tr>
<td>Nominal RMS bunch length, BC1</td>
<td>200</td>
<td>60</td>
<td>µm</td>
</tr>
<tr>
<td>Nominal RMS bunch length, BC2</td>
<td>20</td>
<td>8</td>
<td>µm</td>
</tr>
<tr>
<td>Nominal RMS bunch duration, BC1</td>
<td>667</td>
<td>200</td>
<td>fs</td>
</tr>
<tr>
<td>Nominal RMS bunch duration, BC2</td>
<td>67</td>
<td>27</td>
<td>fs</td>
</tr>
<tr>
<td>Max single bunch repetition rate</td>
<td>120</td>
<td>120</td>
<td>Hz</td>
</tr>
</tbody>
</table>
Intro: The Problem

- High-quality lasing: tight beam parameters
 - Longitudinal feedback systems needed (along with other diagnostics and feedback systems)
 - Bunch length
 - Energy
- PBPL to build bunch length monitor system
 - System will consist of two grating polychromators, one at each bunch compressor (explained later)
Intro: Possible Solutions

- Streak Camera
- Interferometer
- Electro-Optic Techniques
- RF Deflecting Cavity
- Polychromator (Spectrometer)
(more later)
Intro: *System Requirements*

- Only relative bunch length is needed - not absolute bunch length
- Need two bunch length monitors - one at each bunch compressor [1]
- Single-shot
- Non-invasive
- Maintenance free for several days
- Possibility to run at 120 Hz
- Single-shot measurement resolution: 1-2% of nominal bunch length
- Long term signal drift: <2% over ~24 hours

Intro: Phase Feedback

Observables
- Bunch length σ_z
- Energy E

Controllables
- Linac voltage V_{rf}
- Linac phase ϕ_{rf}

- LCLS longitudinal feedback: 2 bunch length loops
 - BC1 bunch length \rightarrow Linac 1 RF phase
 - BC2 bunch length \rightarrow Linac 2 RF phase

Possible Solutions

• Streak Cameras
 + Single-shot
 + Wide dynamic range
 - Limited by temporal resolution (~200 fs at best)
 - Trigger jitter

Hamamatsu "FESCA-200" (Femtosecond Streak Camera).
Temporal resolution: 200 fs.
Possible Solutions

- Interferometers
 - Can be single-shot
 - High temporal (frequency) resolution
 - Compact
 - Narrow dynamic range
 - Complex

RadiaBeam Technologies BLIS (Bunch Length Interferometer System)
http://www.radiabeam.com/products/diagnostics/blis.html
Possible Solutions

• **Electro-Optic Methods**
 + Single-shot
 + Non-invasive (?)
 + Temporal resolution
 - Not yet mature
 - Require expensive femtosecond lasers

P. Bolton et al., SLAC-PUB-9529. Transverse probe geometry produces a spatial image of the bunch. Also see: http://www.rijnh.nl/users/berden/ebunch.html
Possible Solutions

- **RF Deflecting Cavities**
 - Single shot
 - Femtosecond resolution
 - May require separate RF system
 - Invasive (destroy measured shot)

Possible Solutions

- Polychromators
 - Single-shot
 - Temporal resolution
 - Robust
 - Require relatively expensive detector & vacuum system
Possible Solutions

Summary

<table>
<thead>
<tr>
<th></th>
<th>Single-shot</th>
<th>Non-Invasive</th>
<th>Good Temporal Resolution</th>
<th>Maintenance Free</th>
</tr>
</thead>
<tbody>
<tr>
<td>Streak Camera</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>Interferometer</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>Electro-Optic</td>
<td>Y</td>
<td>Y (?)</td>
<td>Y</td>
<td>Y (?)</td>
</tr>
<tr>
<td>RF Deflector</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>Polychromator</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
</tbody>
</table>
Single-Shot Spectrometer

Bunch length monitor locations

- After 4th chicane magnet of BC1, BC2
Single-Shot Spectrometer Design

- Use CSR/CER from bunch compressor chicane magnets
 - Vacuum port window
 - Focusing/turning mirror
 - Entrance slit
 - Grating
 - Off-axis parabola (line focus)
 - Multichannel detector (linear array of cryogenically cooled bolometers)
Single-Shot Spectrometer

Bunch Distributions

- **BC1**
 - Smooth parabolic distribution
 - Simple CSR spectrum
 - $\sigma = 0.197 \text{ mm}$

- **BC2**
 - Wake-induced double-horn
 - Complicated CSR spectrum
 - $\sigma = 20.338 \text{ \mu m}$
Single-Shot Spectrometer

Challenge: BC2 CSR Spectrum

CSR energy spectrum after BC2.
Black curve: double-horn distribution
Blue curve: Gaussian distribution
Red curve: step function

• Double-horn distribution complicates CSR spectrum
 - Similar to Gaussian below 4 THz
 - Stay below 4 THz
Single-Shot Spectrometer

Challenge: Detectors

BC1
- Frequency range: 150-500 GHz
- ~ 20 channels
- Easy, but big
 - large vacuum chamber
 - large optics
- InSb hot electron bolometers

BC2
- Frequency range: 1-4 THz
- ~ 20 channels
- More challenging than BC1
- Needs special filtering
- Thermal composite bolometers?
- Need to research more
Single-Shot Spectrometer
Challenge: Beamline Integration

- Low-loss vacuum port window over desired frequency range (Diamond?)
- Cryostats: liquid helium & nitrogen
 - Helium hold time (weeks?)
 - Closed-cycle nitrogen system (Sterling Engine?)
- Windowless enclosure for detector system
Single-Shot Spectrometer

BC1 Detector Assembly

- InSb hot-electron bolometers
- 10 liter cryostat
- Helium hold time: 4-6 weeks!

20-channel linear array of InSb hot-electron bolometers, courtesy QMC Instruments.
Conclusion

Some work done so far...

Brookhaven CER work

UCLA built ATF compressor.

Simulated CSR spectrum from FieldEye, a post-processor of TREDI.

Ref: G. Andonian, this workshop.
Conclusion

Workplan

• Simulate CR exiting vacuum ports of BC1, BC2 & arriving at detector
 – TREDI/FieldEye simulations
• Choose detector type
 – Finalize bolometer evaluations
 – SLAC to purchase
• Continue to study system
 – Windowless vacuum enclosure
 – Dynamic range (grating, *in situ* tuning)
 – Calibration methods
• Mechanical design & beamline integration with SLAC
 – CAD design work
 – Finalized by SLAC
• Test system (SPPS or APS Linac)